AI/ML

An enhanced adaptive non-local means algorithm for Rician noise reduction in magnetic resonance brain images.




Icon for BioMed Central Icon for PubMed Central Related Articles

An enhanced adaptive non-local means algorithm for Rician noise reduction in magnetic resonance brain images.

BMC Med Imaging. 2020 01 06;20(1):2

Authors: Chen K, Lin X, Hu X, Wang J, Zhong H, Jiang L

Abstract
BACKGROUND: The Rician noise formed in magnetic resonance (MR) imaging greatly reduced the accuracy and reliability of subsequent analysis, and most of the existing denoising methods are suitable for Gaussian noise rather than Rician noise. Aiming to solve this problem, we proposed fuzzy c-means and adaptive non-local means (FANLM), which combined the adaptive non-local means (NLM) with fuzzy c-means (FCM), as a novel method to reduce noise in the study.
METHOD: The algorithm chose the optimal size of search window automatically based on the noise variance which was estimated by the improved estimator of the median absolute deviation (MAD) for Rician noise. Meanwhile, it solved the problem that the traditional NLM algorithm had to use a fixed size of search window. Considering the distribution characteristics for each pixel, we designed three types of search window sizes as large, medium and small instead of using a fixed size. In addition, the combination with the FCM algorithm helped to achieve better denoising effect since the improved the FCM algorithm divided the membership degrees of images and introduced the morphological reconstruction to preserve the image details.
RESULTS: The experimental results showed that the proposed algorithm (FANLM) can effectively remove the noise. Moreover, it had the highest peak signal-noise ratio (PSNR) and structural similarity (SSIM), compared with other three methods: non-local means (NLM), linear minimum mean square error (LMMSE) and undecimated wavelet transform (UWT). Using the FANLM method, the image details can be well preserved with the noise being mostly removed.
CONCLUSION: Compared with the traditional denoising methods, the experimental results showed that the proposed approach effectively suppressed the noise and the edge details were well retained. However, the FANLM method took an average of 13 s throughout the experiment, and its computational cost was not the shortest. Addressing these can be part of our future research.

PMID: 31906873 [PubMed - indexed for MEDLINE]

Source link







WordPress database error: [Error writing file '/tmp/MYV9B0Yh' (Errcode: 28 - No space left on device)]
SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM wp_posts LEFT JOIN wp_term_relationships ON (wp_posts.ID = wp_term_relationships.object_id) WHERE 1=1 AND wp_posts.ID NOT IN (435300) AND ( wp_term_relationships.term_taxonomy_id IN (313) ) AND wp_posts.post_type = 'post' AND (wp_posts.post_status = 'publish') GROUP BY wp_posts.ID ORDER BY RAND() LIMIT 0, 3

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy