AI/ML

TyG-er: An ensemble Regression Forest approach for identification of clinical factors related to insulin resistance condition using Electronic Health Records.


Icon for Elsevier Science Related Articles

TyG-er: An ensemble Regression Forest approach for identification of clinical factors related to insulin resistance condition using Electronic Health Records.

Comput Biol Med. 2019 09;112:103358

Authors: Bernardini M, Morettini M, Romeo L, Frontoni E, Burattini L

Abstract
BACKGROUND: Insulin resistance is an early-stage deterioration of Type 2 diabetes. Identification and quantification of insulin resistance requires specific blood tests; however, the triglyceride-glucose (TyG) index can provide a surrogate assessment from routine Electronic Health Record (EHR) data. Since insulin resistance is a multi-factorial condition, to improve its characterisation, this study aims to discover non-trivial clinical factors in EHR data to determine where the insulin-resistance condition is encoded.
METHODS: We proposed a high-interpretable Machine Learning approach (i.e., ensemble Regression Forest combined with data imputation strategies), named TyG-er. We applied three different experimental procedures to test TyG-er reliability on the Italian Federation of General Practitioners dataset, named FIMMG_obs dataset, which is publicly available and reflects the clinical use-case (i.e., not all laboratory exams are prescribed on a regular basis over time).
RESULTS: Results detected non-conventional clinical factors (i.e., uricemia, leukocytes, gamma-glutamyltransferase and protein profile) and provided novel insight into the best combination of clinical factors for detecting early glucose tolerance deterioration. The robustness of these extracted clinical factors was confirmed by the high agreement (from 0.664 to 0.911 of Lin’s correlation coefficient (rc)) of the TyG-er approach among different experimental procedures. Moreover, the results of the three experimental procedures outlined the predictive power of the TyG-er approach (up to a mean absolute error of 5.68% and rc=0.666,p<.05).
CONCLUSIONS: The TyG-er approach is able to carry information about the identification of the TyG index, strictly correlated with the insulin-resistance condition, while extracting the most relevant non-glycemic features from routine data.

PMID: 31336327 [PubMed – indexed for MEDLINE]

Source link

Related posts

Neuroimaging and Machine Learning for Dementia Diagnosis: Recent Advancements and Future Prospects.

Newsemia

May 2019 Newsletter

Newsemia

Tencent moves into automotive with $150M joint venture

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World