Predicting outdoor ultrafine particle number concentrations, particle size, and noise using street-level images and audio data.

Predicting outdoor ultrafine particle number concentrations, particle size, and noise using street-level images and audio data.

Environ Int. 2020 Aug 14;144:106044

Authors: Hong KY, Pinheiro PO, Weichenthal S

Outdoor ultrafine particles (UFPs) (<0.1 µm) may have an important impact on public health but exposure assessment remains a challenge in epidemiological studies. We developed a novel method of estimating spatiotemporal variations in outdoor UFP number concentrations and particle diameters using street-level images and audio data in Montreal, Canada. As a secondary aim, we also developed models for noise. Convolutional neural networks were first trained to predict 10-second average UFP/noise parameters using a large database of images and audio spectrogram data paired with measurements collected between April 2019 and February 2020. Final multivariable linear regression and generalized additive models were developed to predict 5-minute average UFP/noise parameters including covariates from deep learning models based on image and audio data along with outdoor temperature and wind speed. The best performing final models had mean cross-validation R2 values of 0.677 and 0.523 for UFP number concentrations and 0.825 and 0.735 for UFP size using two different test sets. Audio predictions from deep learning models were stronger predictors of spatiotemporal variations in UFP parameters than predictions based on street-level images; this was not explained only by noise levels captured in the audio signal. All final noise models had R2 values above 0.90. Collectively, our findings suggest that street-level images and audio data can be used to estimate spatiotemporal variations in outdoor UFPs and noise. This approach may be useful in developing exposure models over broad spatial scales and such models can be regularly updated to expand generalizability as more measurements become available.

PMID: 32805577 [PubMed – as supplied by publisher]

Source link

Related posts

Natural Language Processing Tracks Public Interest in COVID-19 Topics


Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: a systematic review protocol.


AI Advancing Cybersecurity Across Many Fronts


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy


COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World