COVID-19 Prediction Models and Unexploited Data.

Related Articles

COVID-19 Prediction Models and Unexploited Data.

J Med Syst. 2020 Aug 13;44(9):170

Authors: Santosh KC

For COVID-19, predictive modeling, in the literature, uses broadly SEIR/SIR, agent-based, curve-fitting techniques/models. Besides, machine-learning models that are built on statistical tools/techniques are widely used. Predictions aim at making states and citizens aware of possible threats/consequences. However, for COVID-19 outbreak, state-of-the-art prediction models are failed to exploit crucial and unprecedented uncertainties/factors, such as a) hospital settings/capacity; b) test capacity/rate (on a daily basis); c) demographics; d) population density; e) vulnerable people; and f) income versus commodities (poverty). Depending on what factors are employed/considered in their models, predictions can be short-term and long-term. In this paper, we discuss how such continuous and unprecedented factors lead us to design complex models, rather than just relying on stochastic and/or discrete ones that are driven by randomly generated parameters. Further, it is a time to employ data-driven mathematically proved models that have the luxury to dynamically and automatically tune parameters over time.

PMID: 32794042 [PubMed - in process]

Source link

WordPress database error: [Error writing file '/tmp/MYWrzqXb' (Errcode: 28 - No space left on device)]
SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM wp_posts LEFT JOIN wp_term_relationships ON (wp_posts.ID = wp_term_relationships.object_id) WHERE 1=1 AND wp_posts.ID NOT IN (410065) AND ( wp_term_relationships.term_taxonomy_id IN (313) ) AND wp_posts.post_type = 'post' AND (wp_posts.post_status = 'publish') GROUP BY wp_posts.ID ORDER BY RAND() LIMIT 0, 3

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy