Cardiology

Anisotropic Polytetrafluoroethylene Cardiovascular Conduits Spontaneously Expand in a Growing Lamb Model.


Related Articles

Anisotropic Polytetrafluoroethylene Cardiovascular Conduits Spontaneously Expand in a Growing Lamb Model.

J Invest Surg. 2020 Aug 14;:1-7

Authors: Azakie A, Carney JP, Lahti MT, Moklyak Y, Bianco RW

Abstract
BACKGROUND: Insertion of conduits from the right ventricle (RV) to the pulmonary artery (PA) is a commonly used technique for repair of congenital heart defects. The vast majority of infants and children will require reoperation and/or re-intervention to replace the conduit. Some children may require multiple reoperations, with the risk of death and morbidity increasing significantly with each subsequent operation. We evaluated the feasibility and performance of a relatively novel anisotropic conduit for cardiovascular repair in the growing lamb model.
MATERIALS AND METHODS: Lambs were allocated into a control (n = 3) or test (n = 4, anisotropic) conduit group. Control conventional polytetrafluoroethylene (PTFE) conduits or test anisotropic expanded PTFE (ePTFE) based test conduits measuring 10-11 mm in diameter were sewn as interpositional grafts in the main pulmonary artery (MPA) and followed up to 6 months. Clinical and echocardiographic evaluations were performed monthly with hemodynamic and angiographic assessment at 3 and 6 months.
RESULTS: Control conduits did not expand, all 3 animals developed one or more adverse events including tachypnea, ascites, inappetence, lethargy, and mortality due to severe right heart failure and significantly higher peak trans-conduit gradients (48.5 ± 5.1 p = 0.02). The test conduits spontaneously expanded up to 14.8 ± 0.8 mm in diameter, no adverse events were observed in any animals and trans-conduit gradients were significantly lower (27.0 ± 8.3, p = 0.02).
CONCLUSIONS: Anisotropic ePTFE conduits can be safely implanted in growing lambs with stable hemodynamics. This spontaneously expanding anisotropic conduit may represent a novel approach to congenital heart repairs that would avoid the need for reoperation or multiple operations.

PMID: 32791879 [PubMed – as supplied by publisher]

Source link

Related posts

COVID-19 and diabetes

Newsemia

Assessment of wall stresses and mechanical heart power in the left ventricle: Finite element modeling versus Laplace analysis.

Newsemia

RESPONSE: Cardio-Obstetrics: Time to Assess

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World