AI/ML

Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement Learning: An In Silico Validation.


Icon for IEEE Engineering in Medicine and Biology Society Related Articles

Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement Learning: An In Silico Validation.

IEEE J Biomed Health Inform. 2020 Aug 05;PP:

Authors: Zhu T, Li K, Herrero P, Georgiou P

Abstract
People with Type 1 diabetes (T1D) require regular exogenous infusion of insulin to maintain their blood glucose concentration in a therapeutically adequate target range. Although the artificial pancreas and continuous glucose monitoring have been proven to be effective in achieving closed-loop control, significant challenges still remain due to the high complexity of glucose dynamics and limitations in the technology. In this work, we propose a novel deep reinforcement learning model for single-hormone (insulin) and dual-hormone (insulin and glucagon) delivery. In particular, the delivery strategies are developed by double Q-learning with dilated recurrent neural networks. For designing and testing purposes, the FDA-accepted UVA/Padova Type 1 simulator was employed. First, we performed long-term generalized training to obtain a population model. Then, this model was personalized with a small data-set of subject-specific data. In silico results show that the single and dual-hormone delivery strategies achieve good glucose control when compared to a standard basal-bolus therapy with low-glucose insulin suspension. Specifically, in the adult cohort (n=10), percentage time in target range [70, 180] mg/dL improved from 77.6% to 80.9% with single-hormone control, and to 85.6% with dual-hormone control. In the adolescent cohort (n=10), percentage time in target range improved from 55.5% to 65.9% with single-hormone control, and to 78.8% with dual-hormone control. In all scenarios, a significant decrease in hypoglycemia was observed. These results show that the use of deep reinforcement learning is a viable approach for closed-loop glucose control in T1D.

PMID: 32755873 [PubMed – as supplied by publisher]

Source link

Related posts

New Zealand’s Health Ministry encourages GPs to give patients access to medical notes

Newsemia

3 Chatbot Trends That Will Impact the Auto Industry

Newsemia

Every drop-down list is a voice tech opportunity

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World