Deep Generative Model of Individual Variability in fMRI Images of Psychiatric Patients.

Deep Generative Model of Individual Variability in fMRI Images of Psychiatric Patients.

IEEE Trans Biomed Eng. 2020 Jul 13;PP:

Authors: Matsubara T, Kusano K, Tashiro T, Ukai K, Uehara K

Neuroimaging techniques, such as the resting-state functional magnetic resonance imaging (fMRI), have been investigated to find objective biomarkers of neurological and psychiatric disorders. Objective biomarkers potentially provide a refined diagnosis and quantitative measurements of the effects of treatment. However, fMRI images are sensitive to individual variability, such as functional topography and personal attributes. Suppressing the irrelevant individual variability is crucial for finding objective biomarkers for multiple subjects. Herein, we propose a structured generative model based on deep learning (i.e., a deep generative model) that considers such individual variability. The proposed model builds a joint distribution of (preprocessed) fMRI images, state (with or without a disorder), and individual variability. It can thereby discriminate individual variability from the subject’s state. Experimental results demonstrate that the proposed model can diagnose unknown subjects with greater accuracy than conventional approaches. Moreover, the diagnosis is fairer to gender and state, because the proposed model extracts subject attributes (age, gender, and scan site) in an unsupervised manner.

PMID: 32746057 [PubMed – as supplied by publisher]

Source link

Related posts

Artificial intelligence and deep learning in ophthalmology.


Varjo raises $54 million to bring VR with ‘human eye’ resolution to more industries


Elon Musk, his arch nemesis DeepMind swear off AI weapons


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy


COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World