AI/ML

Detecting and Classifying Self-injurious Behavior in Autism Spectrum Disorder Using Machine Learning Techniques.


Icon for Springer Related Articles

Detecting and Classifying Self-injurious Behavior in Autism Spectrum Disorder Using Machine Learning Techniques.

J Autism Dev Disord. 2020 Mar 26;:

Authors: Cantin-Garside KD, Kong Z, White SW, Antezana L, Kim S, Nussbaum MA

Abstract
Traditional self-injurious behavior (SIB) management can place compliance demands on the caregiver and have low ecological validity and accuracy. To support an SIB monitoring system for autism spectrum disorder (ASD), we evaluated machine learning methods for detecting and distinguishing diverse SIB types. SIB episodes were captured with body-worn accelerometers from children with ASD and SIB. The highest detection accuracy was found with k-nearest neighbors and support vector machines (up to 99.1% for individuals and 94.6% for grouped participants), and classification efficiency was quite high (offline processing at ~ 0.1 ms/observation). Our results provide an initial step toward creating a continuous and objective smart SIB monitoring system, which could in turn facilitate the future care of a pervasive concern in ASD.

PMID: 32219634 [PubMed – as supplied by publisher]

Source link

Related posts

Build more effective conversations on Amazon Lex with confidence scores and increased accuracy

Newsemia

Statistical shape analysis of tap roots: a methodological case study on laser scanned sugar beets

Newsemia

Identifying bird species on the edge using the Amazon SageMaker built-in Object Detection algorithm and AWS DeepLens

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World