Membrane peroxidation index and maximum lifespan are negatively correlated in fish of the genus Nothobranchius [SHORT COMMUNICATION]

Jorge de Costa, Gustavo Barja, and Pedro F. Almaida-Pagan

The lipid composition of cell membranes is linked to metabolic rate and lifespan in mammals and birds but very little information is available for fish. In this study, three fish species of the short-lived annual genus Nothobranchius with different maximum lifespan potential (MLSP) and the longer-lived outgroup species Aphyosemion australe were studied to test whether they conform to the predictions of the longevity–homeoviscous adaptation (LHA) theory of ageing. Lipid analyses were performed in whole-fish samples and the peroxidation index (PIn) for every phospholipid (PL) class and for the whole membrane was calculated. Total PL content was significantly lower in A. australe and N. korthausae, the two species with the highest MLSP, and a negative correlation between membrane total PIn and fish MLSP was found, meaning that the longer-lived fish species have more saturated membranes and, therefore, a lower susceptibility to oxidative damage, as the LHA theory posits.

Source link

WordPress database error: [Error writing file '/tmp/MYja6m0I' (Errcode: 28 - No space left on device)]
SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM wp_posts LEFT JOIN wp_term_relationships ON (wp_posts.ID = wp_term_relationships.object_id) WHERE 1=1 AND wp_posts.ID NOT IN (380928) AND ( wp_term_relationships.term_taxonomy_id IN (32) ) AND wp_posts.post_type = 'post' AND (wp_posts.post_status = 'publish') GROUP BY wp_posts.ID ORDER BY RAND() LIMIT 0, 3

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy


COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World