Neurology

Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution.




Cumulative hydropathic topology of a voltage-gated sodium channel at atomic resolution.

Proteins. 2020 May 24;:

Authors: Xenakis MN, Kapetis D, Yang Y, Heijman J, Waxman SG, Lauria G, Faber CG, Smeets HJM, Westra RL, Lindsey P

Abstract
Voltage-gated sodium channels (NavChs) are biological pores that control the ow of sodium ions through the cell membrane. In humans, mutations in genes encoding NavChs can disrupt physiological cellular activity thus leading to a wide spectrum of diseases. Here, we present a topological connection between the functional architecture of a NavAb bacterial channel and accumulation of atomic hydropathicity around its pore. This connection is established via a scaling analysis methodology that elucidates how intrachannel hydropathic density variations translate into hydropathic dipole field configurations along the pore. Our findings suggest the existence of a non random cumulative hydropathic topology that is organized parallel to the membrane surface so that pore’s stability, as well as, gating behavior are guaranteed. Given the biophysical significance of the hydropathic effect, our study seeks to provide a computational framework for studying cumulative hydropathic topological properties of NavChs and pore-forming proteins in general. This article is protected by copyright. All rights reserved.

PMID: 32447794 [PubMed – as supplied by publisher]

Source link






Related posts

Education Research: Understanding barriers to goals of care communication for neurology trainees

Newsemia

Temporal sustainability of guideline based door-to-needle times for intravenous thrombolysis for acute ischemic stroke.

Newsemia

PEX10-related autosomal recessive cerebellar ataxia with hearing loss.

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy