A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers

by Kunming Zhao, Xingwen Wang, Xuting Xue, Li Li, Ying Hu

Ataxia-telangiectasia mutated (ATM) is an apical kinase of the DNA damage response following DNA double-strand breaks (DSBs); however, the mechanisms of ATM activation are not completely understood. Long noncoding RNAs (lncRNAs) are a class of regulatory molecules whose significant roles in DNA damage response have started to emerge. However, how lncRNA regulates ATM activity remains unknown. Here, we identify an inhibitor of ATM activation, lncRNA HITT (HIF-1α inhibitor at translation level). Mechanistically, HITT directly interacts with ATM at the HEAT repeat domain, blocking MRE11-RAD50-NBS1 complex–dependent ATM recruitment, leading to restrained homologous recombination repair and enhanced chemosensitization. Following DSBs, HITT is elevated mainly by the activation of Early Growth Response 1 (EGR1), resulting in retarded and restricted ATM activation. A reverse association between HITT and ATM activity was also detected in human colon cancer tissues. Furthermore, HITTs sensitize DNA damaging agent–induced cell death both in vitro and in vivo. These findings connect lncRNA directly to ATM activity regulation and reveal potential roles for HITT in sensitizing cancers to genotoxic treatment.

Source link

Related posts

Does strength training help prevent injury?


University of Massachusetts Amherst: Lecturer – Biochemistry and Molecular Biology


Modulating offspring responses: concerted effects of stress and immunogenic challenge in the parental generation [RESEARCH ARTICLE]


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy


COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World