AI/ML

Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography.


Related Articles

Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography.

J Thorac Imaging. 2020 Mar 12;:

Authors: Fischer AM, Eid M, De Cecco CN, Gulsun MA, van Assen M, Nance JW, Sahbaee P, De Santis D, Bauer MJ, Jacobs BE, Varga-Szemes A, Kabakus IM, Sharma P, Jackson LJ, Schoepf UJ

Abstract
PURPOSE: The purpose of this study was to evaluate the accuracy of a novel fully automated deep learning (DL) algorithm implementing a recurrent neural network (RNN) with long short-term memory (LSTM) for the detection of coronary artery calcium (CAC) from coronary computed tomography angiography (CCTA) data.
MATERIALS AND METHODS: Under an IRB waiver and in HIPAA compliance, a total of 194 patients who had undergone CCTA were retrospectively included. Two observers independently evaluated the image quality and recorded the presence of CAC in the right (RCA), the combination of left main and left anterior descending (LM-LAD), and left circumflex (LCx) coronary arteries. Noncontrast CACS scans were allowed to be used in cases of uncertainty. Heart and coronary artery centerline detection and labeling were automatically performed. Presence of CAC was assessed by a RNN-LSTM. The algorithm’s overall and per-vessel sensitivity, specificity, and diagnostic accuracy were calculated.
RESULTS: CAC was absent in 84 and present in 110 patients. As regards CCTA, the median subjective image quality, signal-to-noise ratio, and contrast-to-noise ratio were 3.0, 13.0, and 11.4. A total of 565 vessels were evaluated. On a per-vessel basis, the algorithm achieved a sensitivity, specificity, and diagnostic accuracy of 93.1% (confidence interval [CI], 84.3%-96.7%), 82.76% (CI, 74.6%-89.4%), and 86.7% (CI, 76.8%-87.9%), respectively, for the RCA, 93.1% (CI, 86.4%-97.7%), 95.5% (CI, 88.77%-98.75%), and 94.2% (CI. 90.2%-94.6%), respectively, for the LM-LAD, and 89.9% (CI, 80.2%-95.8%), 90.0% (CI, 83.2%-94.7%), and 89.9% (CI, 85.0%-94.1%), respectively, for the LCx. The overall sensitivity, specificity, and diagnostic accuracy were 92.1% (CI, 92.1%-95.2%), 88.9% (CI. 84.9%-92.1%), and 90.3% (CI, 88.0%-90.0%), respectively. When accounting for image quality, the algorithm achieved a sensitivity, specificity, and diagnostic accuracy of 76.2%, 87.5%, and 82.2%, respectively, for poor-quality data sets and 93.3%, 89.2% and 90.9%, respectively, when data sets rated adequate or higher were combined.
CONCLUSION: The proposed RNN-LSTM demonstrated high diagnostic accuracy for the detection of CAC from CCTA.

PMID: 32168163 [PubMed – as supplied by publisher]

Source link

WordPress database error: [Error writing file '/tmp/MYa9T5Qs' (Errcode: 28 - No space left on device)]
SELECT SQL_CALC_FOUND_ROWS wp_posts.ID FROM wp_posts LEFT JOIN wp_term_relationships ON (wp_posts.ID = wp_term_relationships.object_id) WHERE 1=1 AND wp_posts.ID NOT IN (352767) AND ( wp_term_relationships.term_taxonomy_id IN (313) ) AND wp_posts.post_type = 'post' AND (wp_posts.post_status = 'publish') GROUP BY wp_posts.ID ORDER BY RAND() LIMIT 0, 3

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World