Regulation of Sugar and Storage Oil Metabolism by Phytochrome during De-etiolation

Exposure of dark-grown (etiolated) seedlings to light induces the heterotrophic-to-photoautotrophic transition (de-etiolation) processes, including the formation of photosynthetic machinery in the chloroplast and cotyledon expansion. Phytochrome is a red (R)/far-red (FR) light photoreceptor that is involved in the various aspects of de-etiolation. However, how phytochrome regulates metabolic dynamics in response to light stimulus has remained largely unknown. In this study, to elucidate the involvement of phytochrome in the metabolic response during de-etiolation, we performed widely targeted metabolomics in Arabidopsis (Arabidopsis thaliana) wild-type and phytochrome A and B double mutant seedlings de-etiolated under R or FR light. The results revealed that phytochrome had strong impacts on the primary and secondary metabolism during the first 24 h of de-etiolation. Among those metabolites, sugar levels decreased during de-etiolation in a phytochrome-dependent manner. At the same time, phytochrome upregulated processes requiring sugars. Triacylglycerols are stored in the oil bodies as a source of sugars in Arabidopsis seedlings. Sugars are provided from triacylglycerols through fatty acid β-oxidation and the glyoxylate cycle in glyoxysomes. We examined if and how phytochrome regulates sugar production from oil bodies. Irradiation of the etiolated seedlings with R and FR light dramatically accelerated oil body mobilization in a phytochrome-dependent manner. Glyoxylate cycle-deficient mutants not only failed to mobilize oil bodies but also failed to develop thylakoid membranes and expand cotyledon cells upon exposure to light. Hence, phytochrome plays a key role in the regulation of metabolism during de-etiolation.

Source link

Related posts

Bad taxonomy can kill world records


Targeted Degradation of Glucose Transporters Protects against Arsenic Toxicity [Research Article]


A Simulation-Based Approach to Statistical Alignment


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy