Salt-water acclimation of the estuarine crocodile Crocodylus porosus involves enhanced ion transport properties of the urodaeum and rectum [RESEARCH ARTICLE]

M. Grosell, R. M. Heuer, N. C. Wu, R. L. Cramp, Y. Wang, E. M. Mager, R. G. Dwyer, and C. E. Franklin

Estuarine crocodiles Crocodylus porosus inhabit freshwater, estuarine and marine environments. Despite being known to undertake extensive movements throughout and between hypo- and hyperosmotic environments, little is known on the role of the cloaca in coping with changes in salinity. In addition to the well-documented functional plasticity of the lingual salt glands, we report here that the middle of the three cloacal segments (i.e. the urodaeum), responds to increased ambient salinity to enhance solute-coupled water absorption. This post-renal modification of urine serves to conserve water when exposed to hyperosmotic environments and, in conjunction with lingual salt gland secretions, enables C. porosus to maintain salt and water balance and thereby thrive in hyperosmotic environments. Isolated epithelia from the urodaeum of 70% seawater-acclimated C. porosus had a strongly enhanced short circuit current (indicator of active ion transport) compared to freshwater-acclimated crocodiles. This enhanced active ion absorption was driven by increased Na+/K+-ATPase activity, and possibly enhanced proton pump activity, and was facilitated by the apical epithelial Na+ channel (ENaC) and/or the apical Na+/H+ exchanger (NHE2), both of which are expressed in the urodaeum. NHE3 was expressed at very low levels in the urodaeum and likely does not contribute to solute-coupled water absorption in this cloacal segment. Since C. porosus does not appear to drink water of salinities above 18 ppt, observations of elevated short circuit current in the rectum as well as a trend for increased NHE2 expression in the esophagus, the anterior intestine, and the rectum, suggests that dietary salt intake may stimulate salt, and possibly water absorption by the gastro-intestinal tract of C. porosus living in hyperosmotic environments.

Source link

Related posts

Fight Aging! Newsletter, October 29th 2018


Starvation halts brain development, but hungry cells jump-start growth when food becomes available


The PLATZ Transcription Factor GL6 Affects Grain Length and Number in Rice


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy