Pharma / Biotech

Model-Based Characterization of the Pharmacokinetics, Target Engagement Biomarkers, and Immunomodulatory Activity of PF-06342674, a Humanized mAb Against IL-7 Receptor-α, in Adults with Type 1 Diabetes.




Related Articles

Model-Based Characterization of the Pharmacokinetics, Target Engagement Biomarkers, and Immunomodulatory Activity of PF-06342674, a Humanized mAb Against IL-7 Receptor-α, in Adults with Type 1 Diabetes.

AAPS J. 2020 Jan 03;22(2):23

Authors: Williams JH, Udata C, Ganguly BJ, Bucktrout SL, Joh T, Shannon M, Wong GY, Levisetti M, Garzone PD, Meng X

Abstract
IL-7 receptor-α (IL-7Rα) blockade has been shown to reverse autoimmune diabetes in the non-obese diabetic mouse by promoting inhibition of effector T cells and consequently altering the balance of regulatory T (Treg) and effector memory (TEM) cells. PF-06342674 is a humanized monoclonal antibody that binds to and inhibits the function of IL-7Rα. In the current phase 1b study, subjects with type 1 diabetes (T1D) received subcutaneous doses of either placebo or PF-06342674 (1, 3, 8 mg/kg/q2w or 6 mg/kg/q1w) for 10 weeks and were followed up to 18 weeks. Nonlinear mixed effects models were developed to characterize the pharmacokinetics (PK), target engagement biomarkers, and immunomodulatory activity. PF-06342674 was estimated to have 20-fold more potent inhibitory effect on TEM cells relative to Treg cells resulting in a non-monotonic dose-response relationship for the Treg:TEM ratio, reaching maximum at ~ 3 mg/kg/q2w dose. Target-mediated elimination led to nonlinear PK with accelerated clearance at lower doses due to high affinity binding and rapid clearance of the drug-target complex. Doses ≥ 3 mg/kg q2w result in sustained PF-06342674 concentrations higher than the concentration of cellular IL-7 receptor and, in turn, maintain near maximal receptor occupancy over the dosing interval. The results provide important insight into the mechanism of IL-7Rα blockade and immunomodulatory activity of PF-06342674 and establish a rational framework for dose selection for subsequent clinical trials of PF-06342674. Furthermore, this analysis serves as an example of mechanistic modeling to support dose selection of a drug candidate in the early phases of development.

PMID: 31900603 [PubMed - in process]

Source link








Related posts

Efficacy and safety of a fixed dose combination tablet of asunaprevir + beclabuvir + daclatasvir for the treatment of Hepatitis C.

Newsemia

PHENTERMINE HYDROCHLORIDE tablet [Lannett Company, Inc.]

Newsemia

HONEY LEMON COUGH DROPS (Menthol) Lozenge [Chain Drug Consortium]

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy