Biology

Optimizing the Power to Identify the Genetic Basis of Complex Traits with Evolve and Resequence Studies




Abstract

Evolve and resequence (E&R) studies are frequently used to dissect the genetic basis of quantitative traits. By subjecting a population to truncating selection for several generations and estimating the allele frequency differences between selected and nonselected populations using next-generation sequencing (NGS), the loci contributing to the selected trait may be identified. The role of different parameters, such as, the population size or the number of replicate populations has been examined in previous works. However, the influence of the selection regime, that is the strength of truncating selection during the experiment, remains little explored. Using whole genome, individual based forward simulations of E&R studies, we found that the power to identify the causative alleles may be maximized by gradually increasing the strength of truncating selection during the experiment. Notably, such an optimal selection regime comes at no or little additional cost in terms of sequencing effort and experimental time. Interestingly, we also found that a selection regime which optimizes the power to identify the causative loci is not necessarily identical to a regime that maximizes the phenotypic response. Finally, our simulations suggest that an E&R study with an optimized selection regime may have a higher power to identify the genetic basis of quantitative traits than a genome-wide association study, highlighting that E&R is a powerful approach for finding the loci underlying complex traits.

Source link




Related posts

Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for ciliogenesis

Newsemia

Methylotrophs and Methylotroph Communities

Newsemia

Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine.

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy