A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs

by Satoshi Naramoto, Victor Arnold Shivas Jones, Nicola Trozzi, Mayuko Sato, Kiminori Toyooka, Masaki Shimamura, Sakiko Ishida, Kazuhiko Nishitani, Kimitsune Ishizaki, Ryuichi Nishihama, Takayuki Kohchi, Liam Dolan, Junko Kyozuka

Land plant shoot structures evolved a diversity of lateral organs as morphological adaptations to the terrestrial environment, with lateral organs arising independently in different lineages. Vascular plants and bryophytes (basally diverging land plants) develop lateral organs from meristems of sporophytes and gametophytes, respectively. Understanding the mechanisms of lateral organ development among divergent plant lineages is crucial for understanding the evolutionary process of morphological diversification of land plants. However, our current knowledge of lateral organ differentiation mechanisms comes almost entirely from studies of seed plants, and thus, it remains unclear how these lateral structures evolved and whether common regulatory mechanisms control the development of analogous lateral organs. Here, we performed a mutant screen in the liverwort Marchantia polymorpha, a bryophyte, which produces gametophyte axes with nonphotosynthetic scalelike lateral organs. We found that an Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and Oryza G1 (ALOG) family protein, named M. polymorpha LATERAL ORGAN SUPRESSOR 1 (MpLOS1), regulates meristem maintenance and lateral organ development in Marchantia. A mutation in MpLOS1, preferentially expressed in lateral organs, induces lateral organs with misspecified identity and increased cell number and, furthermore, causes defects in apical meristem maintenance. Remarkably, MpLOS1 expression rescued the elongated spikelet phenotype of a MpLOS1 homolog in rice. This suggests that ALOG genes regulate the development of lateral organs in both gametophyte and sporophyte shoots by repressing cell divisions. We propose that the recruitment of ALOG-mediated growth repression was in part responsible for the convergent evolution of independently evolved lateral organs among highly divergent plant lineages, contributing to the morphological diversification of land plants.

Source link

Related posts

NMT1 and NMT3 N-Methyltransferase Activity Is Critical to Lipid Homeostasis, Morphogenesis, and Reproduction


From Root to Tips: Sporulation Evolution and Specialization in Bacillus subtilis and the Intestinal Pathogen Clostridioides difficile


The role of hyoid muscles in biotremor production in Chamaeleo calyptratus [RESEARCH ARTICLE]


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy