Neurology

Clinically relevant cranio-caudal patterns of cervical cord atrophy evolution in MS

Objective

To characterize the distribution and regional evolution of cervical cord atrophy in patients with multiple sclerosis (MS) in a multicenter dataset.

Methods

MRI and clinical evaluations were acquired from 179 controls and 435 patients (35 clinically isolated syndromes [CIS], 259 relapsing-remitting multiple sclerosis [RRMS], 99 secondary progressive multiple sclerosis [SPMS], and 42 primary progressive multiple sclerosis [PPMS]). Sixty-nine controls and 178 patients underwent a 1-year MRI and clinical follow-up. Patients were classified as clinically stable/worsened according to their disability change. Longitudinal changes of cord atrophy were investigated with linear mixed-effect models. Sample size calculations were performed using age-, sex- and site-adjusted annualized percentage normalized cord cross-sectional area (CSAn) changes.

Results

Baseline CSAn was lower in patients with MS vs controls (p < 0.001), but not different between controls and patients with CIS or between patients with early RRMS (disease duration ≤5 years) and patients with CIS. Patients with late RRMS (disease duration >5 years) showed significant cord atrophy vs patients with early RRMS (p = 0.02). Patients with progressive MS had decreased CSAn (p < 0.001) vs patients with RRMS. Atrophy was located between C1/C2 and C5 in patients with RRMS vs patients with CIS, and widespread along the cord in patients with progressive MS vs patients with RRMS, with an additional C5/C6 involvement in patients with SPMS vs patients with PPMS. At follow-up, CSAn decreased in all phenotypes (p < 0.001), except CIS. Cord atrophy rates were highest in patients with early RRMS and clinically worsened patients, who had a more widespread cord involvement than stable patients. The sample size per arm required to detect a 50% treatment effect was 118 for patients with early RRMS.

Conclusions

Cord atrophy increased in MS during 1 year, except for CIS. Faster atrophy contributed to explain clinical worsening.

Source link

Related posts

MS: Solvent exposure raises risk by 50 percent

Newsemia

April 2018 Concussion Webinar Post

Newsemia

Breakthrough in Treatment for Restless Leg Syndrome

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World