AI/ML

Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach.

Icon for BioMed Central Related Articles

Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach.

BMC Genomics. 2019 Nov 09;20(1):832

Authors: Arabfard M, Ohadi M, Rezaei Tabar V, Delbari A, Kavousi K

Abstract
BACKGROUND: Machine learning can effectively nominate novel genes for various research purposes in the laboratory. On a genome-wide scale, we implemented multiple databases and algorithms to predict and prioritize the human aging genes (PPHAGE).
RESULTS: We fused data from 11 databases, and used Naïve Bayes classifier and positive unlabeled learning (PUL) methods, NB, Spy, and Rocchio-SVM, to rank human genes in respect with their implication in aging. The PUL methods enabled us to identify a list of negative (non-aging) genes to use alongside the seed (known age-related) genes in the ranking process. Comparison of the PUL algorithms revealed that none of the methods for identifying a negative sample were advantageous over other methods, and their simultaneous use in a form of fusion was critical for obtaining optimal results (PPHAGE is publicly available at https://cbb.ut.ac.ir/pphage).
CONCLUSION: We predict and prioritize over 3,000 candidate age-related genes in human, based on significant ranking scores. The identified candidate genes are associated with pathways, ontologies, and diseases that are linked to aging, such as cancer and diabetes. Our data offer a platform for future experimental research on the genetic and biological aspects of aging. Additionally, we demonstrate that fusion of PUL methods and data sources can be successfully used for aging and disease candidate gene prioritization.

PMID: 31706268 [PubMed – in process]

Source link




Related posts

How Artificial Intelligence is solving different business problems

Newsemia

Modeling and solving staff scheduling with partial weighted maxSAT.

Newsemia

Deepomatic raises $6.2 million for its industrial computer vision technology

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy