David B. Boerma, Kenneth S. Breuer, Tim L. Treskatis, and Sharon M. Swartz

For many animals, movement through complex natural environments necessitates the evolution of mechanisms that enable recovery from unexpected perturbations. Knowledge of how flying animals contend with disruptive forces is limited, however, and is nearly nonexistent for bats, the only mammals capable of powered flight. We investigated perturbation recovery in Carollia perspicillata by administering a well-defined jet of compressed air, equal to 2.5 times bodyweight, which induced two types of disturbances, termed aerial stumbles: pitch-inducing body perturbations and roll-inducing wing perturbations. In both cases, bats responded primarily by adjusting extension of wing joints, and recovered pre-disturbance body orientation and left-right symmetry of wing motions over the course of only one wingbeat cycle. Bats recovered from body perturbations by symmetrically extending their wings cranially and dorsally during upstroke, and from wing perturbations by asymmetrically extending their wings throughout the recovery wingbeat. We used a simplified dynamical model to test the hypothesis that wing extension asymmetry during recovery from roll-inducing perturbations can generate inertial torques that alone are sufficient to produce the observed body reorientation. Results supported the hypothesis, and also suggested that subsequent restoration of symmetrical wing extension helped decelerate recovery rotation via passive aerodynamic mechanisms. During recovery, humeral elevation/depression remained largely unchanged while bats adjusted wing extension at the elbow and wrist, suggesting a proximo-distal gradient in the neuromechanical control of the wing.

Source link