The remote allosteric control of Orai channel gating

by Yandong Zhou, Robert M. Nwokonko, James H. Baraniak Jr., Mohamed Trebak, Kenneth P. K. Lee, Donald L. Gill

Calcium signals drive an endless array of cellular responses including secretion, contraction, transcription, cell division, and growth. The ubiquitously expressed Orai family of plasma membrane (PM) ion channels mediate Ca2+ entry signals triggered by the Ca2+ sensor Stromal Interaction Molecule (STIM) proteins of the endoplasmic reticulum (ER). The 2 proteins interact within curiously obscure ER-PM junctions, driving an allosteric gating mechanism for the Orai channel. Although key to Ca2+ signal generation, molecular understanding of this activation process remain obscure. Crystallographic structural analyses reveal much about the exquisite hexameric core structure of Orai channels. But how STIM proteins bind to the channel periphery and remotely control opening of the central pore, has eluded such analysis. Recent studies apply both crystallography and single-particle cryogenic electron microscopy (cryo-EM) analyses to probe the structure of Orai mutants that mimic activation by STIM. The results provide new understanding on the open state of the channel and how STIM proteins may exert remote allosteric control of channel gating.

Source link

Related posts

High-resolution mapping of cancer cell networks using co-functional interactions


Cockroaches use diverse strategies to self-right on the ground [RESEARCH ARTICLE]


Interchromosomal interactions: A genomic love story of kissing chromosomes


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy