Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury.

Related Articles

Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury.

Clin Neurophysiol. 2019 Jul 25;130(10):1908-1916

Authors: Amorim E, van der Stoel M, Nagaraj SB, Ghassemi MM, Jing J, O’Reilly UM, Scirica BM, Lee JW, Cash SS, Westover MB

OBJECTIVE: Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We sought to evaluate the performance of machine learning methods using EEG reactivity data to predict good long-term outcomes in hypoxic-ischemic brain injury.
METHODS: We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. Electroencephalogram reactivity was tested within 72 h from cardiac arrest using sound and pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features (EEG spectra, entropy, and frequency features) during the 10 s before and after each stimulation. Good outcome was defined as Cerebral Performance Category of 1-2 at six months. Performance of a random forest classifier was compared against a penalized general linear model (GLM) and expert electroencephalographer review.
RESULTS: Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG reactivity methods had comparable performance to expert EEG reactivity assessment for good outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, respectively; p non-significant).
CONCLUSIONS: Machine-learning models utilizing quantitative EEG reactivity data can predict long-term outcome after cardiac arrest.
SIGNIFICANCE: A quantitative approach to EEG reactivity assessment may support prognostication in cardiac arrest.

PMID: 31419742 [PubMed – as supplied by publisher]

Source link

Related posts

Want the Best Body Possible? It All Starts with the Brain!


Concentric or monopolar electrode for jitter determination in orbicularis oculi.


Cerebellar hemorrhages in patients with cerebral amyloid angiopathy


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy