Biology

Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection

Comprehensive and accurate annotation of the repeatome, including transposons, is critical for deepening our understanding of repeat origins, biogenesis, regulatory mechanisms, and roles. Here, we developed Generic Repeat Finder (GRF), a tool for genome-wide repeat detection based on fast, exhaustive numerical calculation algorithms integrated with optimized dynamic programming strategies. GRF sensitively identifies terminal inverted repeats (TIRs), terminal direct repeats (TDRs), and interspersed repeats that bear both inverted and direct repeats. GRF also detects DNA or RNA transposable elements characterized by these repeats in plant and animal genomes. For TIRs and TDRs, GRF identifies spacers in the middle and mismatches/insertions or deletions in terminal repeats, showing their alignment or base-pairing information. GRF helps improve the annotation for various DNA transposons and retrotransposons, such as miniature inverted-repeat transposable elements (MITEs), long terminal repeat (LTR) retrotransposons, and non-LTR retrotransposons, including long interspersed nuclear elements and short interspersed nuclear elements in plants. We used GRF to perform TIR/TDR, interspersed-repeat, and MITE detection in several species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and mouse (Mus musculus). As a generic bioinformatics tool in repeat finding implemented as a parallelized C++ program, GRF was faster and more sensitive than the existing inverted repeat/MITE detection tools based on numerical approaches (i.e. detectIR and detectMITE) in Arabidopsis and mouse. GRF is more sensitive than Inverted Repeat Finder in TIR detection, LTR_FINDER in short TDR detection (≤1,000 nt), and phRAIDER in interspersed repeat detection in Arabidopsis and rice. GRF is an open source available from Github.

Source link

Related posts

Targeted Endoplasmic Reticulum Localization of Storage Protein mRNAs Requires the RNA-Binding Protein RBP-L

Newsemia

Serial Homology and Correlated Characters in Morphological Phylogenetics: Modeling the Evolution of Dental Crests in Placentals

Newsemia

Lovelace Expands Veterinary Expertise with New Hires

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World