Impact of Thoracic Cage Dimension and Geometry on Cardiopulmonary Function in Patients with Congenital Scoliosis: A Prospective Study.

Icon for Wolters Kluwer Related Articles

Impact of Thoracic Cage Dimension and Geometry on Cardiopulmonary Function in Patients with Congenital Scoliosis: A Prospective Study.

Spine (Phila Pa 1976). 2019 Jul 30;:

Authors: Lin Y, Tan H, Rong T, Chen C, Shen J, Liu S, Yuan W, Cong H, Chen L, Luo J, Kwan KYH

STUDY DESIGN: A prospective study of cardiopulmonary function in patients with congenital scoliosis (CS).
OBJECTIVE: To investigate the relationship of thoracic cage deformity and exercise tolerance in CS patients.
SUMMARY OF BACKGROUND DATA: Congenital thoracic scoliosis and chest deformity lead to restrictive pulmonary dysfunction and in some severe cases cause cardiopulmonary failure. However, it is still unknown the relationship between thoracic deformity and exercise performance.
METHODS: Patients with congenital thoracic spinal deformity were included and had radiological assessment of thoracic cage, pulmonary function testing and cardiopulmonary exercise testing. Thoracic dimension including height, width and depth were measured and geometry parameters were calculated. Two-tailed Pearson and Spearman correlation test and linear regression analysis were performed to investigate correlation of radiographic parameters, pulmonary function and physical capacity.
RESULTS: Sixty patients (41 female and 19 male) were included, with an average age of 18.9 years. Patients with smaller thoracic height (P < 0.001) and width (P < 0.01) and larger depth (P < 0.05) had significantly worse static pulmonary function. In exercise testing, these patients showed significant tendency of ventilation insufficiency, including lower minute ventilation (P < 0.05), faster breathing frequency (P < 0.05) and smaller tidal volume (P < 0.01). Thoracic depth was negatively correlated to exercise capacity, reflected by work rate (P < 0.001), peak oxygen intake (P < 0.001) and heart rate (P = 0.043). Patients with abnormal thoracic geometry, especially a lower ratio of height to depth and a lower ratio of width to depth, have significantly worse static pulmonary function and exercise capacity (all P < 0.05).
CONCLUSION: Decreasing thoracic height and width results in restrictive pulmonary dysfunction. Distortion and asymmetry of the thoracic cage are associated with abnormal breathing pattern and reduction of exercise capacity.

PMID: 31365514 [PubMed – as supplied by publisher]

Source link

Related posts

Changes in circulating stem cells and endothelial progenitor cells over a 12-month period after implantation of a continuous-flow left ventricular assist device.


How to Treat Heart Failure & Kidney Failure with Diet


Heartbeat: sex differences in patient-reported outcomes with atrial fibrillation


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy