by Yao-Long Yan, Chao Zhang, Jing Hao, Xue-Lian Wang, Jia Ming, Li Mi, Jie Na, Xinli Hu, Yangming Wang

The molecular mechanism controlling the zygotic genome activation (ZGA) in mammals remains poorly understood. The 2-cell (2C)-like cells spontaneously emerging from cultures of mouse embryonic stem cells (ESCs) share some key transcriptional and epigenetic programs with 2C-stage embryos. By studying the transition of ESCs into 2C-like cells, we identified developmental pluripotency associated 2 and 4 (Dppa2/4) as important regulators controlling zygotic transcriptional program through directly up-regulating the expression of double homeobox (Dux). In addition, we found that DPPA2 protein is sumoylated and its activity is negatively regulated by small ubiquitin-like modifier (Sumo) E3 ligase protein inhibitor of activated STAT 4 (PIAS4). PIAS4 is down-regulated during ZGA process and during transitioning of ESCs into 2C-like cells. Depleting Pias4 or overexpressing Dppa2/4 is sufficient to activate 2C-like transcriptional program, whereas depleting Dppa2/4 or forced expression of Pias4 or Sumo2–Dppa2 inhibits 2C-like transcriptional program. Furthermore, ectopic expression of Pias4 or Sumo2–Dppa2 impairs early mouse embryo development. In summary, our study identifies key molecular rivals consisting of transcription factors and a Sumo2 E3 ligase that regulate zygotic transcriptional program upstream of Dux.

Source link