Applying the science of measurement to biology: Why bother?

by Carmen H. Coxon, Colin Longstaff, Chris Burns

Both basic and translational research are continuously evolving, but the principles that underpin research integrity remain constant. These include rational, hypothesis-driven, and adequately planned and controlled science, which is carried out openly, honestly, and ethically. An important component of this should be minimising experimental irreproducibility. Biological systems, in particular, are inherently variable due to the nature of cells and tissues, as well as the complex molecules within them. As a result, it is important to understand and identify sources of variability and to strive to minimise their influence. In many instances, the application of metrology (the science of measurement) can play an important role in ensuring good quality research, even within biological systems that aren’t always amenable to many of the metrological concepts applied in other fields. Here, we introduce the basic concepts of metrology in relation to biological systems and promote the application of these principles to help avoid potentially costly mistakes in both basic and translational research. We also call on funders to encourage the uptake of metrological principles, as well as provide funding and support for later engagement with regulatory bodies.

Source link

Related posts

Illuminating (White and) Purple Patches


External mechanical work done during the acceleration stage of maximal sprint running and its association with running performance [RESEARCH ARTICLE]


Fra-2 Expression in Osteoblasts Regulates Systemic Inflammation and Lung Injury through Osteopontin [Research Article]


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy


COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World