Cytosine-5 RNA methylation links protein synthesis to cell metabolism

by Nikoletta A. Gkatza, Cecilia Castro, Robert F. Harvey, Matthias Heiß, Martyna C. Popis, Sandra Blanco, Susanne Bornelöv, Abdulrahim A. Sajini, Joseph G. Gleeson, Julian L. Griffin, James A. West, Stefanie Kellner, Anne E. Willis, Sabine Dietmann, Michaela Frye

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.

Source link

Related posts

DIYbio events for the week of September 3


Thin-blooded icefish relocate carbonic anhydrase to gill [INSIDE JEB]


The Expansion of Inosine at the Wobble Position of tRNAs, and Its Role in the Evolution of Proteomes


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy


COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World