Biology

Areal differences in depth cue integration between monkey and human

by Marcelo Armendariz, Hiroshi Ban, Andrew E. Welchman, Wim Vanduffel

Electrophysiological evidence suggested primarily the involvement of the middle temporal (MT) area in depth cue integration in macaques, as opposed to human imaging data pinpointing area V3B/kinetic occipital area (V3B/KO). To clarify this conundrum, we decoded monkey functional MRI (fMRI) responses evoked by stimuli signaling near or far depths defined by binocular disparity, relative motion, and their combination, and we compared results with those from an identical experiment previously performed in humans. Responses in macaque area MT are more discriminable when two cues concurrently signal depth, and information provided by one cue is diagnostic of depth indicated by the other. This suggests that monkey area MT computes fusion of disparity and motion depth signals, exactly as shown for human area V3B/KO. Hence, these data reconcile previously reported discrepancies between depth processing in human and monkey by showing the involvement of the dorsal stream in depth cue integration using the same technique, despite the engagement of different regions.

Source link

Related posts

How to Identify Puncture Vine (a.k.a. the Goathead Monster)

Newsemia

Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte

Newsemia

Sexual dimorphism in human arm power and force: implications for sexual selection on fighting ability [RESEARCH ARTICLE]

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World