Five simultaneous artificial intelligence data challenges on ultrasound, CT, and MRI.

Related Articles

Five simultaneous artificial intelligence data challenges on ultrasound, CT, and MRI.

Diagn Interv Imaging. 2019 Mar 15;:

Authors: Lassau N, Estienne T, de Vomecourt P, Azoulay M, Cagnol J, Garcia G, Majer M, Jehanno E, Renard-Penna R, Balleyguier C, Bidault F, Caramella C, Jacques T, Dubrulle F, Behr J, Poussange N, Bocquet J, Montagne S, Cornelis F, Faruch M, Bresson B, Brunelle S, Jalaguier-Coudray A, Amoretti N, Blum A, Paisant A, Herreros V, Rouviere O, Si-Mohamed S, Di Marco L, Hauger O, Garetier M, Pigneur F, Bergère A, Cyteval C, Fournier L, Malhaire C, Drape JL, Poncelet E, Bordonne C, Cauliez H, Budzik JF, Boisserie M, Willaume T, Molière S, Peyron Faure N, Caius Giurca S, Juhan V, Caramella T, Perrey A, Desmots F, Faivre-Pierre M, Abitbol M, Lotte R, Istrati D, Guenoun D, Luciani A, Zins M, Meder JF, Cotten A

PURPOSE: The goal of this data challenge was to create a structured dynamic with the following objectives: (1) teach radiologists the new rules of General Data Protection Regulation (GDPR), while building a large multicentric prospective database of ultrasound, computed tomography (CT) and MRI patient images; (2) build a network including radiologists, researchers, start-ups, large companies, and students from engineering schools, and; (3) provide all French stakeholders working together during 5 data challenges with a secured framework, offering a realistic picture of the benefits and concerns in October 2018.
MATERIALS AND METHODS: Relevant clinical questions were chosen by the Société Francaise de Radiologie. The challenge was designed to respect all French ethical and data protection constraints. Multidisciplinary teams with at least one radiologist, one engineering student, and a company and/or research lab were gathered using different networks, and clinical databases were created accordingly.
RESULTS: Five challenges were launched: detection of meniscal tears on MRI, segmentation of renal cortex on CT, detection and characterization of liver lesions on ultrasound, detection of breast lesions on MRI, and characterization of thyroid cartilage lesions on CT. A total of 5,170 images within 4 months were provided for the challenge by 46 radiology services. Twenty-six multidisciplinary teams with 181 contestants worked for one month on the challenges. Three challenges, meniscal tears, renal cortex, and liver lesions, resulted in an accuracy>90%. The fourth challenge (breast) reached 82% and the lastone (thyroid) 70%.
CONCLUSION: Theses five challenges were able to gather a large community of radiologists, engineers, researchers, and companies in a very short period of time. The accurate results of three of the five modalities suggest that artificial intelligence is a promising tool in these radiology modalities.

PMID: 30885592 [PubMed – as supplied by publisher]

Source link

Related posts

Studying expressions of loneliness in individuals using twitter: an observational study.


Why UAE is still finding EMR adoption a challenge


Probabilistic Reasoning across the Causal Hierarchy. (arXiv:2001.02889v1 [cs.LO])


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy