AI/ML

Deep neural network models of sensory systems: windows onto the role of task constraints.



Related Articles

Deep neural network models of sensory systems: windows onto the role of task constraints.

Curr Opin Neurobiol. 2019 Mar 15;55:121-132

Authors: Kell AJ, McDermott JH

Abstract
Sensory neuroscience aims to build models that predict neural responses and perceptual behaviors, and that provide insight into the principles that give rise to them. For decades, artificial neural networks trained to perform perceptual tasks have attracted interest as potential models of neural computation. Only recently, however, have such systems begun to perform at human levels on some real-world tasks. The recent engineering successes of deep learning have led to renewed interest in artificial neural networks as models of the brain. Here we review applications of deep learning to sensory neuroscience, discussing potential limitations and future directions. We highlight the potential uses of deep neural networks to reveal how task performance may constrain neural systems and behavior. In particular, we consider how task-optimized networks can generate hypotheses about neural representations and functional organization in ways that are analogous to traditional ideal observer models.

PMID: 30884313 [PubMed – as supplied by publisher]

Source link




Related posts

Space Engineers: Major Physics Overhaul

Newsemia

Putting neural networks under the microscope

Newsemia

China’s Infervision is helping 280 hospitals worldwide detect cancers from images

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy