Building on recombinant DNA technology, leaps in synthesis, assembly, and analysis of DNA have revolutionized genetics and molecular biology over the past two decades (Kosuri and Church, 2014). These technological advances have accelerated the emergence of synthetic biology as a new discipline (Cameron et al., 2014). Synthetic biology is characterized by efforts targeted at the modification of existing and the design of novel biological systems based on principles adopted from information technology and engineering (Andrianantoandro et al., 2006; Khalil and Collins, 2010). As in more traditional engineering disciplines such as mechanical, electrical and civil engineering, synthetic biologists utilize abstraction, decoupling and standardization to make the design of biological systems more efficient and scalable. To facilitate the management of complexity, synthetic biology relies on an abstraction hierarchy composed of multiple levels (Endy, 2005): DNA as genetic material, “parts” as elements of DNA encoding basic biological functions (e.g. promoter, ribosome-binding site, terminator sequence), “devices” as any combination of parts implementing a human-defined function, and “systems” as any combination of devices fulfilling a predefined purpose. Parts are designated to perform predictable and modular functions in the context of higher-level devices or systems, which are successively refined through a cycle of designing, building, and testing.

Source link