Related Articles

In vitro and in vivo pharmacokinetics and metabolism of MK-8353 by liquid chromatography combined with diode array detector and Q-Exactive-Orbitrap tandem mass spectrometry.

J Pharm Biomed Anal. 2019 Feb 13;168:64-74

Authors: Gong J, Jiang Z, Yang T, Zhu Y

Abstract
In this study, a simple and sensitive quantitation method based on liquid chromatography combined with diode array detector and Q-Exactive-Orbitrap tandem mass spectrometry was developed for the determination of MK-8353 in rat plasma. The chromatographic separation was carried out on a Waters ACQUITY BEH C18 column by using water containing 1 mM ammonium acetate and acetonitrile containing 0.1% formic acid as mobile phase. The developed assay was linear (r > 0.999) over the concentration range of 1-1000 ng/mL. The selectivity, precision, accuracy, recovery, matrix effects and stability were all within the required limits. The validated assay has been further applied to the pharmacokinetic study of MK-8353 in rat after intravenous and oral administration, which revealed that MK-8353 showed low clearance and satisfactory bioavailability. More importantly, the metabolites of MK-8353 present in rat plasma, RLM, DLM and HLM were identified and profiled. Under the current conditions, a total of 10 metabolites were detected and their chemical structures were proposed in terms of the accurate masses and their fragment ions. Our results revealed that MK-8353 was metabolized mainly through dealkylation, demethylation, depropylation, oxygenation, sulfur oxidation and formation of lactam. Compared with animal species, no human-specific metabolite was found in HLM. This study provides overall in vitro and in vivo profiles of MK-8353, which is of great help in understanding its PK/PD profiles and in predicting human pharmacokinetic profiles.

PMID: 30797103 [PubMed – as supplied by publisher]

Source link