Biology

Aquatic versus terrestrial crab skeletal support: morphology, mechanics, molting and scaling [RESEARCH ARTICLE]



Jennifer R. A. Taylor

The transition from aquatic to terrestrial environments places significant mechanical challenges on skeletal support systems. Crabs have made this transition multiple times and are the largest arthropods to inhabit both environments. Furthermore, they alternate between rigid and hydrostatic skeletons, making them an interesting system to examine mechanical adaptations in skeletal support systems. I hypothesized that terrestrial crabs have modified morphology to enhance mechanical stiffness and that rigid and hydrostatic skeletons scale differently from each other, with stronger allometric relationships on land. Using the aquatic blue crab, Callinectes sapidus, and the terrestrial blackback land crab, Gecarcinus lateralis, I measured and compared body mass, merus morphology (dimensions, cuticle thickness and the second moment of area I) and mechanics (flexural stiffness EI, elastic modulus E, critical stress and hydrostatic pressure) of rigid and hydrostatic stage crabs encompassing a range of sizes (C. sapidus: 1.5–133 g, N≤24; G. lateralis: 22–70 g, N≤15). The results revealed that rigid G. lateralis has similar morphology (limb length to diameter L/D and cuticle thickness to limb diameter T/D ratio) to C. sapidus, and the mechanics and most scaling relationships are the same. Hydrostatic land crabs differ from aquatic crabs by having different morphology (thinner cuticle), mechanics (greater internal pressures) and scaling relationship (cuticle thickness). These results suggest that the rigid crab body plan is inherently overbuilt and sufficient to deal with the greater gravitational loading that occurs on land, while mechanical adaptations are important for hydrostatically supported crabs. Compared with other arthropods and hydrostatic animals, crabs possess distinct strategies for adapting mechanically to life on land.

Source link

Related posts

USP13 Inhibition Clears Lewy Bodies in a Mouse Model of Parkinson's Disease

Newsemia

Visiting Assistant Professor in Genetics at Swarthmore College

Newsemia

Variation in Expression of the HECT E3 Ligase UPL3 Modulates LEC2 Levels, Seed Size, and Crop Yields in Brassica napus

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World