Biology

EGFR signaling coordinates patterning with cell survival during <i>Drosophila</i> epidermal development


by Samuel H. Crossman, Sebastian J. Streichan, Jean-Paul Vincent

Extensive apoptosis is often seen in patterning mutants, suggesting that tissues can detect and eliminate potentially harmful mis-specified cells. Here, we show that the pattern of apoptosis in the embryonic epidermis of Drosophila is not a response to fate mis-specification but can instead be explained by the limiting availability of prosurvival signaling molecules released from locations determined by patterning information. In wild-type embryos, the segmentation cascade elicits the segmental production of several epidermal growth factor receptor (EGFR) ligands, including the transforming growth factor Spitz (TGFα), and the neuregulin, Vein. This leads to an undulating pattern of signaling activity, which prevents expression of the proapoptotic gene head involution defective (hid) throughout the epidermis. In segmentation mutants, where specific peaks of EGFR ligands fail to form, gaps in signaling activity appear, leading to coincident hid up-regulation and subsequent cell death. These data provide a mechanistic understanding of how cell survival, and thus appropriate tissue size, is made contingent on correct patterning.

Source link

Related posts

Within-individual behavioural variability and division of labour in social insects [COMMENTARY]

Newsemia

Chemistry Through Biology: Translating Molecular Biology Technologies into Practical Processes for API Production, Upcoming Webinar Hosted by Xtalks

Newsemia

Brex: The first corporate credit card specifically for biotech and pharma startups

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy

COVID-19

COVID-19 (Coronavirus) is a new illness that is having a major effect on all businesses globally LIVE COVID-19 STATISTICS FOR World