Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis.

Icon for Silverchair Information Systems Related Articles

Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis.

JAMA Psychiatry. 2018 Sep 26;:

Authors: Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S, Rosen M, Ruef A, Dwyer DB, Paolini M, Chisholm K, Kambeitz J, Haidl T, Schmidt A, Gillam J, Schultze-Lutter F, Falkai P, Reiser M, Riecher-Rössler A, Upthegrove R, Hietala J, Salokangas RKR, Pantelis C, Meisenzahl E, Wood SJ, Beque D, Brambilla P, Borgwardt S, PRONIA Consortium

Importance: Social and occupational impairments contribute to the burden of psychosis and depression. There is a need for risk stratification tools to inform personalized functional-disability preventive strategies for individuals in at-risk and early phases of these illnesses.
Objective: To determine whether predictors associated with social and role functioning can be identified in patients in clinical high-risk (CHR) states for psychosis or with recent-onset depression (ROD) using clinical, imaging-based, and combined machine learning; assess the geographic, transdiagnostic, and prognostic generalizability of machine learning and compare it with human prognostication; and explore sequential prognosis encompassing clinical and combined machine learning.
Design, Setting, and Participants: This multisite naturalistic study followed up patients in CHR states, with ROD, and with recent-onset psychosis, and healthy control participants for 18 months in 7 academic early-recognition services in 5 European countries. Participants were recruited between February 2014 and May 2016, and data were analyzed from April 2017 to January 2018.
ain Outcomes and Measures: Performance and generalizability of prognostic models.
Results: A total of 116 individuals in CHR states (mean [SD] age, 24.0 [5.1] years; 58 [50.0%] female) and 120 patients with ROD (mean [SD] age, 26.1 [6.1] years; 65 [54.2%] female) were followed up for a mean (SD) of 329 (142) days. Machine learning predicted the 1-year social-functioning outcomes with a balanced accuracy of 76.9% of patients in CHR states and 66.2% of patients with ROD using clinical baseline data. Balanced accuracy in models using structural neuroimaging was 76.2% in patients in CHR states and 65.0% in patients with ROD, and in combined models, it was 82.7% for CHR states and 70.3% for ROD. Lower functioning before study entry was a transdiagnostic predictor. Medial prefrontal and temporo-parieto-occipital gray matter volume (GMV) reductions and cerebellar and dorsolateral prefrontal GMV increments had predictive value in the CHR group; reduced mediotemporal and increased prefrontal-perisylvian GMV had predictive value in patients with ROD. Poor prognoses were associated with increased risk of psychotic, depressive, and anxiety disorders at follow-up in patients in the CHR state but not ones with ROD. Machine learning outperformed expert prognostication. Adding neuroimaging machine learning to clinical machine learning provided a 1.9-fold increase of prognostic certainty in uncertain cases of patients in CHR states, and a 10.5-fold increase of prognostic certainty for patients with ROD.
Conclusions and Relevance: Precision medicine tools could augment effective therapeutic strategies aiming at the prevention of social functioning impairments in patients with CHR states or with ROD.

PMID: 30267047 [PubMed – as supplied by publisher]

Source link

Related posts

Comparison of kNN and k-means optimization methods of reference set selection for improved CNV callers performance


Is Artificial Intelligence Increasing Or Decreasing Cybercrime? –


Tesla Full Self-Driving Images Leaked


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy