Loss of RNA-Directed DNA Methylation in Maize Chromomethylase and DDM1-Type Nucleosome Remodeler Mutants

Plants make use of distinct types of DNA methylation characterized by their DNA methyltransferases and modes of regulation. One type, RNA-directed DNA methylation (RdDM), is guided by small interfering RNAs (siRNAs) to the edges of transposons that are close to genes, areas called mCHH islands in maize (Zea mays). Another type, chromomethylation, is guided by histone H3 lysine 9 methylation to heterochromatin across the genome. We examined DNA methylation and small RNA expression in plant tissues that were mutant for both copies of the genes encoding chromomethylases as well as mutants for both copies of the genes encoding DECREASED DNA METHYLATION1 (DDM1)-type nucleosome remodelers, which facilitate chromomethylation. Both sets of double mutants were nonviable but produced embryos and endosperm. RdDM was severely compromised in the double mutant embryos, both in terms of DNA methylation and siRNAs. Loss of 24-nucleotide siRNA from mCHH islands was coupled with a gain of 21-, 22-, and 24-nucleotide siRNAs in heterochromatin. These results reveal a requirement for both chromomethylation and DDM1-type nucleosome remodeling for RdDM in mCHH islands, which we hypothesize is due to dilution of RdDM components across the genome when heterochromatin is compromised.

Source link

Related posts

A new mechanism for how animal cells stay intact


Franz and Semantic Web Company Partner to Create a Noam Chomsky Knowledge Graph


Article of Significant Interest in This Issue [Spotlight]


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy