Roles of Receptor-Like Cytoplasmic Kinase VII Members in Pattern-Triggered Immune Signaling

Pattern-recognition receptors (PRRs), which consist of receptor kinases (RKs) and receptor-like proteins, sense microbe- and host-derived molecular patterns associated with pathogen infection to trigger immune responses in plants. Several kinases of the 46-member Arabidopsis (Arabidopsis thaliana) receptor-like cytoplasmic kinase (RLCK) subfamily VII play important roles in pattern-triggered immunity, but it is unclear whether different RLCK VII members act specifically or redundantly in immune signaling. Here, we constructed nine higher order mutants of this subfamily (named rlck vii-1 to rlck vii-9) and systematically characterized their immune phenotypes. The mutants rlck vii-5, –7, and –8 had compromised reactive oxygen species production in response to all patterns tested, indicating that the corresponding members are broadly required for the signaling of multiple PRRs. However, rlck vii-4 was defective specifically in chitin-induced reactive oxygen species production, suggesting that RCLK VII-4 members mediate the signaling of specific PRRs. Furthermore, RLCK VII-4 members were required for the chitin-triggered activation of MAPK, demonstrating that these kinases link a PRR to MAPK activation. Moreover, we found that RLCK VII-6 and -8 also were required for RK-mediated root growth. Together, these results show that numerous RLCK VII members are involved in pattern-triggered immune signaling and uncover both common and specific roles of these kinases in plant development and immunity mediated by various RKs.

Source link

Related posts

Ultrahigh-throughput screening enables efficient single-round oxidase remodelling


Diagenode Launches State-of-the-Art Solution for Shearing DNA Up to 100 kb Fragments for Long-Read Sequencing


biological; +747 new citations


This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy