Biology

Innate turning preference of leaf-cutting ants in the absence of external orientation cues [RESEARCH ARTICLE]

Thomas Endlein and Metin Sitti

Most ants use a combination of cues for orientation but how do ants find their way when all external cues are suppressed? Do they walk in a random way or are their movements spatially oriented? Here, we show for the first time that leaf-cutting ants (Acromyrmex lundii) have an innate preference for turning counter-clockwise (left) when external cues are precluded. We demonstrated this by allowing individual ants to run freely on the water surface of a newly developed treadmill. The surface tension supported medium-sized workers but effectively prevented ants from reaching the wall of the vessel, which was important to avoid wall-following behaviour (thigmotaxis). Most ants ran for minutes on the spot but also slowly turned counter-clockwise in the absence of visual cues. Reconstructing the effective path walked revealed a looping pattern which could be interpreted as a search strategy. A similar turning bias was shown for groups of ants in a symmetrical Y-maze where twice as many ants chose the left branch in the absence of optical cues. Wall-following behaviour was tested by inserting a coiled tube before the Y-fork. When ants traversed a left-coiled tube, more ants chose the left box and vice versa. Adding visual cues in the form of vertical black strips either outside the treadmill or on one branch of the Y-maze led to oriented walks towards the strips. It is suggested that both turning bias and wall following are employed as search strategies for an unknown environment which can be overridden by visual cues.

Source link




Related posts

“Plants colonized Earth 100 million years earlier than previously thought”. Not.

Newsemia

Comparing context-dependent call sequences employing machine learning methods: an indication of syntactic structure of greater horseshoe bats [RESEARCH ARTICLE]

Newsemia

The MYB Activator WHITE PETAL1 Associates with MtTT8 and MtWD40-1 to Regulate Carotenoid-Derived Flower Pigmentation in Medicago truncatula

Newsemia

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

Privacy & Cookies Policy